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1. INTRODUCTION

Unit-root nonstationarity in economic time series has been a hotly contested
issue. A widely used unit-root is the augmented Dickey-Fuller or ADF test
(Dickey and Fuller (1979)). Derived from an autoregressive AR(p+1)
representation, the test examines the null hypothesis of a unit root against
stationary alternatives. Since the null hypothesis maintained is a
nonstationary process, empirical failures to find stationarity may reflect the
power of the test.

Elliott, Rothenberg, and Stock (1992) devise a new unit-root test with
good power. In studying the asymptotic power envelope for various unit-root
tests, these authors propose a simple modification of the ADF test such that
the modified test, referred to as the DF-GLS test, can nearly achieve the
power envelope. The DF-GLS test is shown to be approximately uniformly
most power invariant (UMPI) while no strictly UMPI test exists. Monte Carlo
results reported indicate that the power improvement from using the
modified Dickey-Fuller test can be large. Elliot, Rothenberg, and Stock
(1992) derive the limiting distribution of the test with and without a time
trend. Approximate finite-sample critical values for the test with a time trend
are tabulated for several sample sizes based on p =0.

The purpose of this study is twofold. First, it demonstrates the significant
effect of lag order on finite-sample critical values of the DF-GLS test.
Empirical applications of the test necessarily deal with finite samples. The

@& result here suggests that a same set of critical values should not be applied to
tests with different values of p. Second, the study provides estimates of finite-
sample critical values that correct for the effect of lag order. Lag-adjusted
critical values can be computed directly from response surface equations.
The response surface analysis is useful in that it yields estimates of critical
values not only for a few specific sample sizes but a full range of sample sizes.

Response surface analysis has been used by MacKinnon (1991) to obtain
approximate finite-sample critical values for the conventional ADF test. In
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estimating the ADF critical values, p is assumed to be fixed and equal to zero
only. Consequently, the potential sensitivity of critical values to the lag order
has not been considered and allowed for. Cheung and Lai (1995) extend the
response surface analysis and show that, although the asymptotical distribu-
tion of the ADF test does not depend on the lag parameter, its finite-sample
distribution can be rather sensitive to the parameter. Computationally simple
response surface equations are reported, yielding lag-adjusted critical values
for the ADF test. In related research, Cheung and Lai (1993) provided finite-
sample critical values for Johansen’s (1991) reduced rank cointegration tests
by taking into account their dependence on the sample size and also the lag
order.

The paper is organized as follows: Section II briefly describes the DF-GLS
test. Section III discusses the experimental design and reports results of
response surface estimation of critical values for the DF-GLS test. Section IV
provides some empirical examples illustrating the use of lag-adjusted finite-
sample critical values. Section V contains concluding remarks.

1. THE DF-GLS TEST

Elliott, Rothenberg, and Stock (1992) — hereafter referred to as ERS —
obtain the asymptotic power envelope for unit-root tests by analyzing the
sequence of Neyman-Pearson tests of the unit-root null hypothesis (@ =1)
against the local alternative of @ =1+ ¢/T in the Gaussian AR(p + 1) model,
for which T is the sample size and ¢ is some constant. Based on asymptotic
power calculation, it is shown that a modified Dickey-Fuller test, called the
DF-GLS test, can achieve a substantial gain in power over conventional unit-
root tests.

Let {y} be the data process under examination. The DF-GLS" test that
allows for a linear time trend is conducted based on the following regression:

(1_L)ylt=a0ylr—l+2}p=laj(1—L)ylr—j+ul (1)

where L is the lag operator; u, is a white noise error term; and y}, the locally
detrended data process under the local alternative of @, is given by

yi=y—zpB (2)
with z,=(1, ¢) and B being the regression coefficient of y, on Z,, for which
y=(y, (1=dlL)y,, .., (1—dlL)y;} and Z,=(z;, (1-al)zy ..,

(1--aL)z;). The DF-GLS" test statistic is given by the conventional ¢-
statistic testing a, =0 against the alternative of a, <0 in regression (1). ERS
recommend that the parameter ¢, which defines the local alternative through
a =1+ ¢/T, be set equal to — 13.5. For the test without a time trend, denoted
by DF-GLS#, it involves the same procedure as the DF-GLS” test, except that
y*is replaced by the locally demeaned series y#and z, = 1. In this case, the use
of ¢=—7 is recommended. The DF-GLS# test shares the same limiting
distribution as the usual ADF test in the no-deterministic case. Approximate
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finite-sample critical values for the DF-GLS" test statistic are tabulated by
ERS (1992, Table 1) using simulation for specific samples sizes: 50, 100, 200,
and 500. Using response surface analysis, this study illustrates the roles of
both the sample size and the lag order in determining the finite-sample
critical values of the two DF-GLS tests.

I. LAG-ADJUSTED FINITE-SAMPLE CRITICAL VALUES

Response surface methodology has been used in many fields of applied
statistics (Myers, Khuri, and Carter (1989)). Early studies that use the
methodology in econometrics include Hendry (1979), Hendry and Harrison
(1974), and Hendry and Srba (1977); later developments are reviewed by

TABLE 1
Response Surface Estimation

DF-GLS* Test DF-GLS" Test
Coefficients
&Statistics 10% 5% 10% 5%
L -1.624 -1.948 —-2.550 -2.838
(0.001)** (0.002)** (0.002)** (0.003)**
T, —19.888 -17.839 -20.166 -20.328
(0.314)** (0.438)** (0.544)** (0.560)**
12 155.231 104.086 155.215 124.191
; (3.3(8)3)" (13.243)** (18.558)** (18.435)*
1 . 0.802 1.133 1.267
‘ Qgea 0% Saw om0
2 . . .808 10.530
) 1(2.(6)28)" (2.934)** (1.124)** (1.257)*
3 —16.055 —18.332 —-20.313 —24.600
(1.809)** (2441 (3.024)** (3.432)**
R? 0.991 0.984 0.981 0979
g, 0.012 0.015 0.018 0.020
Mean | £| 0.009 0.012 0.014 0.016
Restricted Regression (¢, =¢,=¢;=0):
R? 0.805 0.780 0.329 0.350
g, 0.054 0.056 0.187 0.111
Mean | €| 0.039 0.040 0.072 0.077

Notes.

The response surface regression is given by equat
time trend; whereas, the DF-GLS" test represen
heteroskedasticity-consistent standard errors for ¢
Statistical significance is indicated by a d
standard error of the regression. Mean

ouble asterisk (

surface predictions versus estimated critical values from simulations.

ion (4). The DF-GLS* test is the test without a
ts the one with a time trend. Corresponding
oefficient estimates are in parentheses.
=) for the 5% level. &, represents the
| €| gives the mean absolute error of the response
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Henry (1984 ). Response surface analysis applies in general to a system where
the response of some variable depends on a set of other variables that can be
controlled and measured in experiments. Simulations are conducted to
evaluate the effects on the response variable of designed changes in the
control variables. A response surface describing the response variable as a
function of the control variables is then estimated.

In our analysis, the response variable is the finite-sample critical value of
the DE-GLS test and the control variables are the sample size (T ) and the lag
order (p). To provide a comprehensive coverage of interactions between the
control variables, a factorial experimental design is entertained. The factorial
design covers 296 different pairings of (7, p), for which T={28, 30, 31, 33,
34, 36, 37, 39, 40, 42, 43, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475,
500, 600} and p={0, 1, 2, 3, 4, 5, 6, 8}. In each experiment for given (7, p),
the 10 percent and 5 percent critical values are computed as corresponding
percentiles of the empirical finite-sample distribution constructed based on
25,000 replications. The data generating process (DGP) is specified as

x/=xl"l+el (3)

with e, being independently distributed standard normal innovations. Sample
series of x, are generated by setting the initial value x, equal to zero and
creating 7+ 50 observations, of which the first 50 observations are
discarded. The GAUSS programming language and the subroutine RNDN
are used to generate random normal innovations.

The lag order considered in the regression equation (1) is more general
than that implied by the DGP given by equation (3). Higher-order DGPs, for
which e, is autocorrelated, is allowed for in the test provided that the lag
order p is large enough to capture the dependence. If the lag order used is too
small relative to the true lag order, the error term u, in the regression will no
longer be white noise. In this case, the DF-GLS test can be seriously biased,
making estimates of critical values inaccurate.

Although a response surface can assume different functional forms, it
needs to satisfy some restriction in the case here. Intuitively, with a given
sample size, the choice of lag order can affect the ADF test by determining
the effective number of observations available and the number of parameters
to be estimated in the test. As the sample size increases to infinity, nonethe-
less, the effect of p on critical values is expected to diminish to zero. To
account for the intuition, together with the asymptotic restriction, the follow-
ing response surface equation of a general polynomial form is fitted:

CRy =10+ T (/T + L ¢{p/TV +ex, (4)

1=1 j=1
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where CR , is the critical value estimate for a sample size T and lag p; rand
s are the respective polynomial orders for the variables 1/7 and p/T; and
€1, is a random error term. The second summation term captures the
incremental contribution from the lag order. Note that the p/T factor
diminishes to zero as the value of T goes to infinity. Since both 1/T and p/
T—-0as T— o, the intercept term gives an estimate of the asymptotic critical
value.

Table 1 contains the results of response surface regressions. Since tests
with and without a linear trend are conducted at both 10 percent and 5
percent significance levels, four response surface regressions are run. A range
of different values of r and s have been considered in estimating equation (4).
For both the DF-GLS* and DF-GLS* tests, r=2 and s=23 fit the data
particularly well. Both the 1/T and p/T variables show up to be significant in
all regressions at the 5 percent level. When higher-order polynomial terms
were included, they were found to add little to the explanatory power.
Various measures of data fit are also computed, including the squared
multiple correlation coefficient (R?), standard error of regression (4,), and
mean absolute error (mean | £ |). The results given in Table 1 indicate that the
ability of the response surface equations to fit the data is very good, in view of
the high goodness of fit as measured by R?. Both measures of 6, and mean
| € | are also fairly small in all four regressions.

To check the explanatory power of the p/T variable, moreover, restricted
regressions excluding the terms involving the variable are fitted. As
evidenced by the results reported in Table 1, excluding the p/7 variable can
substantially reduce the fit of response surfaces, resulting in a much lower R?
as well as much larger values of 6, and mean | £|.

Some finite-sample critical values have been estimated by ERS (1992) for
the DF-GLS" test based on p =0. It is interesting to compare those estimates
directly with the response surface estimates of critical values obtained here,
as displayed in Table 2. The estimates provided by ERS are given in the third
column. The last four columns contain response surface estimates for p =0,
4, 6, and 8. Not surprisingly, the response surface estimates for p =0 match
very closely with the ERS estimates. This is not the case, however, when
other values of p are considered. The critical values for p =4, 6, and 8 clearly
differ from the ERS estimates. The differences in estimates magnify as the
sample size decreases.

IV. ILLUSTRATIVE APPLICATIONS

To illustrate how lag-adjusted critical values can be used in practice, the DF-
GLS" test is applied to two sets of economic time series. In applying the unit-
root test, researchers are sometimes interested in examining the robustness of
test results to lag specifications. Since finite-sample critical values are shown
to be sensitive to the lag order, critical values that correct for the lag effect
should be used so that reliable inferences can be made.
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TABLE 2
Lag Order and Finite-Sample Critical Values

Response Surface Estimates of Critical Values

Sample Sig. ERS
Size Level Estimate p=0 p=4 p=06 p=8
50 10% -2.89 -2.891 —2.748 —2.649 —2542 o
5% -3.19 —3.195 -3.039 -2.934 —2.823
75 10% N/A -2.791 —2.706 —2.648 —2.583
5% N/A -3.087 -2.993 -2931 —2.862
160 10% -2.74 -2.736 -2.676 -2.637 —2.593
5% -3.03 -3.029 -2.963 -2.920 —2.873
150 10% N/A -2.678 -2.641 -2.619 -2.592
5% N/A —-2.968 -2927 —-2.902 —2.874
200 10% ~2.64 —2.647 -2.621 -2.605 - 2587
5% -293 -2.937 -2.907 —2.890 —-2.871
500 10% -2.59 ~2.590 -2.580 —-2.574 -2.569
5% ~-2.89 -2878 —2.867 —2.861 —2.855
Notes:

The finite-sample critical values tabulated are for the DF-GLS " Test. The column beneath ERS
gives the estimates of critical values provided by Elliott, Rothenberg, and Stock (1992); these
finite-sample critical values are computed based on p =0.

A. Persistence in Output Dynamics

An issue concerns the persistence in U.S. output fluctuations, witness studies
by Campbell and Mankiw (1987), Cochrane (1988), Diebold and Rudebusch
(1989), and Watson (1986), among others. In this example, historical output
data for the U.S. as well as France, Germany, and Italy are examined for trend
stationarity. The data consist of annual series of real per capita gross
domestic product for the period of 1870-1989 (120 observations). The data
through 1979 are taken from Maddison (1982) and updated to 1989 based
on data from the OECD Main Economic Indicators. All data series are
expressed in natural logarithms.

Table 3A reports the results of the DF-GLS® test, along with the
corresponding critical values for p=0, 2, 4, 6, and 8. For France, Germany,
and Italy, the null of a unit root cannot be rejected at any standard level of &
significance. In contrast, significant evidence of trend stationarity can be
found for the U.S. output series. These results are shown to be robust with
respect to the choice of lag order. The findings on the whole suggest that the
U.S. experience is unique in showing much less output persistence than the
other countries.
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B.  Purchasing Power Parity

According to the purchasing power parity theory, currencies are valued for
the goods they can purchase and, in equilibrium, the exchange rate between
two countries’ currencies should be equal to their relative price levels. A
testable implication is that real exchange rates should display mean reversion
at least in the long run. In the present example, three currencies against the
U.S. § are examined, those of French franc/$, German mark/$, and Italian
lira/S. The data under study are annual real exchange rate data constructed
from nominal exchange rates and national price levels measured by consumer
prices indices (CPIs). The data sample covers the period from 1900 through
1990 (91 observations). Data on annual exchange rates are obtained from
Lee (1978), and annual CPIs from 1900 to 1989 are drawn from Maddison
(1991). These data series are updated and extended to 1990 using annual
data taken from the IMF’s International Financial Statistics data tape. All the
series of real exchange rates are transformed using natural logarithms.

Table 3B contains the results of the DF-GLS" test for real exchange rates.
In all cases under examination, the null hypothesis of trend nonstationarity
can be rejected. Accordingly, significant evidence of mean reversion is found

TABLE 3
Illustrative Applications of the DF-GLS™ Test

Lag Used in the Test

p=0 p=2 p=4 p=6 p=8

A. Real Per Capita GDP (T=120):

France —-0.232 ~1.196 -1.144 -0.632 —0.760
Germany -1.585 ~-1.351 -1.284 -1.149 -0.954
Italy -0475 ~0.381 -0.465 -0.305 —0.420
uU.S. —2915* ~3918** -—3162** -3.270% —3.222%
Critical Value (10%) —2.707 ~2.686 —2.659 -2.629 —-2.594
Critical Value (5%) —2.999 ~2975 —2.946 -2912 —2.875
B. Real Exchange Rates (T=91):

France/U.S. —3.674* —4124* -3836" -2661* —2.641*
Germany/U.S. ~11.699** —6.702** —5.103** -4.405** —3.466**
Italy/U.S. —3470%* ~—3.398* -—3028* -—2.724* -2.626*
Critical Value (10%) —2.753 —2.723 —2.686 —2.641 -2.591
Critical Value (5%) —-3.046 -3.014 -2972 -2924 -2.870
Notes:

Lag-adjusted finite-sample critical values for the DF-GLS " test applipd_ar(j. computed from t.he
response surface equations given in Table 1. Statistical significance in indicated by an asterisk
(*) for the 10% level or a double asterisk (**) for the 5% level.
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in real exchange rates, in accordance with purchasing power parity. Note that
the findings are shown to be not sensitive to the lag order. Consider the Italy/
U.S. case closely. The DF-GLS" test statistics are given by —2.724 for p=6
and —2.626 for p=_8. These statistics would not be significant at the 10
percent level if critical values not adjusted for the lag effect — i.e., the critical
values for p =0 — were used. A similar situation applies to the France/U.S.
case. The DF-GLS- test statistics for p =6 and p =8 would not be significant
at the 10 percent level if non-lag-adjusted critical values were used. Such
situation highlights the virtue of using lag-adjusted critical values.

V. CONCLUSION

Usual practice of applying the Dickey-Fuller-type test in empirical work
has largely ignored the effect of lag order. This is often justified by the
asymptotic result that the limiting distribution of the test is free of the lag
parameter. The practice may not be appropriate, however, because the test
can be sensitive to the lag order in finite samples, with which empirical
applications always deal.

This study examines the application of a new modified Dickey-Fuller test,
the DF-GLS test, which has been shown to be more powerful than
conventional unit-root tests. The study shows that the lag order can signifi-
cantly affect the critical values of the test in finite samples. This points to the
importance of correcting for the lag order effect in implementing the DF-GLS
test. Approximate lag-adjusted finite-sample critical values for the DF-GLS
test are provided, which can be straightforwardly computed from response
surface equations.
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