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1 INTRODUCTION

Since the work of Engle and Granger (1987) and Granger (1986), there has
been a surge of interest in cointegration analyses of equilibrium relationships
between non-stationary economic variables. While non-stationary economic
series can wander widely through time, economic theory often suggests that
specific sets of variables should obey certain long-run equilibrium
constraints. If the individual economic series are stationary only after differ-
encing but a linear combination of their levels is stationary, then the series are
said to be cointegrated.

An approach to analyze cointegrated systems due to Johansen (1988,
1991) has received much attention recently. Johansen proposes a maximum
likelihood (ML) method for estimating long-run equilibrium relationships or
cointegrating vectors and derives likelihood ratio (LR) tests for cointegration
in a Gaussian vector error correction model.! Phillips (1991), examining the
distributional properties of the ML estimator of cointegrating vectors, shows
that the ML estimator is super-consistent, symmetrically distributed, and
median-unbiased asymptotically, and that an optimal theory of inference
applies.

An issue concerns the performance of the ML cointegration analysis in
finite samples. The LR tests for cointegration is derived from asymptotic
results and statistical inferences in finite samples may not be appropriate. In
particular, the critical values based on asymptotic distributions can be
misleading. Moreover, the LR tests are conducted in a vector autoregressive
framework with a given lag specification. Since the ‘true’ model is generally
not known in practice, it is desirable to investigate the sensitivity of the tests

'Based on the triangular representation of the error correction model (e.g., Phillips (1991)),
Stock and Watson (1991) derive efficient estimators of cointegrating vectors that are computed
using the ordinary or generalized least squares method. While Stock and Watson’s estimators
can apply to systems involving some variables with higher orders of integration, their estimators
are asymptotically equivalent to Johansen's (1991) ML estimator in the standard case where
variables are all integrated of order one.

313



314 BULLETIN

to model misspecification. Further, while the theoretical distributions of the
LR statistics are obtained under the normality assumption, the assumption
seems restrictive for general applicability and little is known about how its
violation can affect the distributions of the test statisics.

The purpose of this study is to examine the finite-sample sizes of
Johansen's (1991) LR tests for cointegration and their robustness to lag
length specification and non-normal errors. In related research, Gonzalo
(1990) examines the finite-sample properties of the ML estimator of cointe-
grating vectors.? In contrast to Gonzalo (1990), which deals mainly with the
problem of estimation, the present study addresses the problem of hypothesis
testing and inference. Accordingly, this study contributes further evidence on
the performance of Johansen’s ML technique for cointegration analysis.
Johansen (1988) derives a LR cointegration test based on a vector
autoregressive model without a constant term. Johansen (1991) shows,
however, that when a constant term is included in the model, both the LR test
statistic and its asymptotic distribution are altered. In addition, the analysis
depends crucially on whether or not the underlying processes are allowed to
contain a linear trend in the non-stationary part. In this analysis we consider
Johansen’s (1991) cointegration tests that allow for a time trend, whereas
Gonsalo (1990) examines Johansen’s (1988) method for estimating co-
integrating vectors.

The paper is organized as follows. Section II briefly discusses Johansen’s
LR tests for cointegration. Section III reports the finite-sample critical values
of the LR test statistics based on response surface analysis. Section IV
examines the sensitivity of the LR tests for cointegration to lag specification
and non-normal errors. Section V concludes.

II. LIKELIHOOD RATIO TESTS FOR COINTEGRATION

Johansen’s (1991) statistical analysis is based on the technique of reduced
rank regression (e.g, Ahn and Reinsel (1990) and Velu et al. (1986)).
Johansen shows that cointegration can be tested as the hypothesis of a
reduced rank of a regression coefficient matrix in a vector error correction
model (VECM).

Consider in general an nX1 time series vector X,=(x,,...,X,)
represented by

CL)X,=u+e, (1)

1Gonzalo (1990) reports that the finite-sample properties of the Johansen ML estimator of
cointegrating vectors are consistent with the asymptotic results in Phillips (1991). This is so
even when the errors are non-normal or when the model is over-parameterized. The ML
method is also shown to perform better than other methods for estimating cointegrating
vectors, including ordinary least squares (Engle and Granger (1987)), non-linear least squares
(Stock (1987)), principal components (Stock and Watson (1988)), and canonical correlations
(Bossaerts (1988)).
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where L is the lag operator, C(L)=1- C,L— ... — C,L% uis some constant
vector and ¢, is a vector of white Gaussian noises with mean zero and
variance matrix Q. By writing C(L)= C(1)L*+AC*(L) where C*(0)=1 and
A =1-L, the VECM representation for (1) is

AX,=pu+TAX,_(+.. .+ AX o F0X  Fe (2)

where I,= -1+ C, +...+ C, j=1,... k. It follows that C(1)= —T. Under
the hypothesis of r(0< r < n) cointegrating vectors, C(1)= da' where d and a
are n X r matrices of rank r such that a'X, is stationary. The r columns of a
are the cointegrating vectors. Johansen (1991) shows that ML estimation of
the cointegration space spanned by a can be based on the least squares
residuals from two vector regressions:

AX,=c, +NAX,  + ... +T, AKX, .+, (3)
X, = +TAX, _ + .. AT, AX, o 18y, (4)

where c, and c, are constant terms. Define the product moment matrices of
the residuals as

£

T
S,=T 'Y EE, iLj=12 (5)
1=1
The LR test statistic for the hypothesis of at most r cointegrating vectors is

—2InQ=-T » In(1-4,) (6)

J=r+l

with 4,,,,..., 4, being the n —rsmallest eigenvalues of S,, 5, . S, with respect
to S,,. The asymptotic distribution of the —2 In Q statistic is given by the
trace of a stochastic matrix

Jl (dW)F'U FF'dt]_ J Fdw) (7)

where W is an (n—r)-dimensional standard Brownian motion and F=
{F\(1),..., F,_ (0)} is defined by

The statistic in (6) is called the trace statistic by Johansen and Juselius (1990).
An alternative LR statistic, given by

—2anr|r+l=—Tln(1_lr+l) (8)
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and called the maximal eigenvalue statistic, examines the null hypothesis of r
cointegrating vectors against the alternative of r+1 cointegrating vectors.
The asymptotic distribution of this statistic is given by the maximum eigen-
value of the stochastic matrix in (7). The percentiles of the asymptotic distri-
bution for both the trace and the maximal eigenvalue statistics are tabulated
in Johansen and Juselius (1990; Table A2) using simulation analysis.

III. FINITE-SAMPLE CRITICAL VALUES

Although the asymptotic critical values of Johansen’s LR tests can be
obtained from theoretical distributions, empirical analyses necessarily deal
with finite samples and the quality of the asymptotic approximations to
critical values in finite samples becomes an important issue. To the extent that
the appropriate finite-sample critical values are different from the asymptotic
ones, finite-sample analyses can bias the LR tests toward finding cointegra-
tion either too often or too infrequently. It is thus important to examine the
direction and the degree of the finite-sample bias of the LR cointegration
tests.

In this study, the finite-sample critical values for both the trace and
maximal eigenvalue tests are estimated using response surface analysis in
Monte Carlo experiments. Response surface methodology has been used in
many fields of applied statistics (see, for example, a review article by Myers,
Khuri and Carter (1989)). Early econometric studies that employ response
surface analysis include Hendry (1979), Hendry and Harrison (1974), and
Hendry and Srba (1977). Recently, MacKinnon (1991) uses response surface
analysis to provide finite-sample critical values for the Engle-Granger (1987)
two-step cointegration tests. Response surface estimation of critical values is
useful. It can yield a simple summarization of the simulation outcomes, and
estimates of critical values for not only a few sample sizes but for any finite
sample size can be computed easily from response surface equations.

Response surface analysis applies in general to a system where the
response of some variable depends on a set of other variables that can be
controlled and measured in experiments. The analysis proceeds with
simulation experiments evaluating the effects on the response variable of
designed changes in the control variables. A response surface describing the
response variable as a function of the control variables is then fitted to the
experimental data.

In our analysis, the response variable is the finite-sample critical value and
the control variables are the sample size (T ), the number of variables in the
estimated system (), and the lag parameter (k). A factorial experimental
design is employed, covering different possible combinations of T={33, 36,
39, 42, 45, 50, 55, 60, 70, 80, 90, 100, 150, 200, 300, 500}, n={2, 3, 4, 5},
and k={1, 2, 4, 6}. The factorial design can provide a comprehensive
coverage of interactions among the control variables. Due to limited degrees
of freedom, the experiments for n=35, k=6, and 7<39 will not be included.

LV
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The design here yields 253 simulation experiments. The data generating
process (DGP) is considered, as in Engle and Granger (1987) and Engle and
Yoo (1987), to be given by

XI=XI—1 +,ut (9)

with X, =(x,,,...,x,,) and u, being an nx 1 vector of independently distri-
buted normal errors of mean zero and covariance matrix /. In the Monte
Carlo experiment sample series of X, are generated by setting the initial
values of X, equal to zero and creating T+ 50 observations, of which the first
50 observations are discarded to minimize the effect of the initial condition.
The Monte Carlo results reported below are all obtained through 20,000
replications. The GAUSS programming language and the subroutine RNDN
are used to generate pseudo-random normal innovations.

While the finite-sample critical values are expected to be a function of 7, n,
and k, finding a proper approximating function for response surface regres-
sions is important for obtaining accurate estimates of the critical values. In
general, a response surface can take many possible functional forms. The
formulation of the functional form, nonetheless, needs to satisfy some restric-
tion. In our case, specifically, for given values of n and k, the finite-sample cri-
tical values should equal the asymptotic values at the limit as the value of T
approaches infinity. This asymptotic restriction therefore provides a useful
criterion for checking the adequacy of the specification of a response surface.

Previous results reported by Reinsel and Ahn (1988) suggest that a scaling
factor, which is a simple function of 7, n, and k, may be used to obtain
approximate finite-sample critical values from their asymptotic counterparts.
Reimers (1991), for example, applies the Reinsel-Ahn method to adjust
Johansen’s test statistics by a factor of (7—nk)/T and compare them with
their asymptotic critical values. An equivalent way to make finite-sample
corrections is to adjust the critical values and not the test statistics.
Accordingly, the implied scaling factor (SF ) is given by

CR,/CR., =SF =T/(T— nk) (10)

where CR; is the approximate finite-sample critical value, 7 is the effective
number of observations, and CR,, is the asymptotic critical value at the
corresponding significance level. Estimates of CR., have been provided by
Johansen and Juselius (1990). The ratio CR;/CR. can be viewed as a
measure of finite-sample bias: no bias exists only when CR;/CR., =1. The
denominator of the scaling factor can be considered a degree-of-freedom
correction term. As the value of T approaches infinity, the scaling factor
diminishes to unity and so the value of CR; converges to its asymptotic value
CR.., satisfying the asymptotic restriction.

To study the performance of the Reinsel-Ahn approximation method, the
following response surface equation is fitted:

CR;;/CR,, = B, + B, SF, + errors (11)
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where CR; is the finite-sample simulation estimate of the critical value, SE;is
the scaling variable defined earlier, and the subscript j refers to the jth
experiment. The Reinsel-Ahn method implies that 8,=0 and B, = 1, which
jointly represent a testable hypothesis in regression analysis. Another
interesting but weaker hypothesis that can be tested is f,+f,=1. We
observe that the asymptotic restriction does not strictly require §,=0 and
B,=1.As T—~ o, SF~1 and so CR;/CR, ~1 as long as §,+ 8, = 1. Since
the trace test and the maximal eigenvalue test are conducted at both 10 and 5
percent significance levels in the experiments, four response surface
regressions are run.

Table 1 contains the response surface regression results. The results
suggest that the ability of equation (11) to fit the data is remarkably good,
given the high goodness of fit as measured by R2. As reported in Table 1, the
R? values are all greater than 0.997. The sum of squared errors (SSE) is also
fairly small for every regression. The standard errors of estimates for the
regressions were computed. They are given respectively by 0.01430 and
0.01496 for the 10 and 5 percent trace tests and by 0.01550 and 0.01765 for
the 10 and 5 percent maximal eigenvalue tests. The Durbin-Watson (DW)
statistics appear satisfactory in all regressions, indicating the presence of no

TABLE 1
Response Surface Estimation of Critical Values

Regression The trace test The maximal eigenvalue test
coeficients

and statistics 10% 5% 10% 5%

Bo 0.11906 0.10902 0.08566 0.07422

(0.00383)* (0.03582)* (0.00720)** (0.00889)**

B 0.88224 0.89150 091284 0.92481

(0.00308)** (0.02865)** (0.00599)* (0.00740)**
x-test(By=0and 215.0043 198.6887 647.5459 354.5935

B,=1)[p-value]  [0.0000] [0.0000] (0.0000] (0.0000]
ytest(Bo+ B =1) 14151 02232 1.0660 0.30822

[p-value] [0.2342) [0.6366) (0.3018] [0.57877]
R? 0.9980 0.9978 0.9978 0.9972
SSE 0.0499 0.0546 0.0586 0.0760
DW 1.8496 1.7383 2.0359 1.9816

The response surface regression is given by equation (11). The numbers in parentheses are
heteroskedasticity-consistent standard errors (White (1980)). Statistical significance is
indicated by * at the 10% level and ** at the 5% level. The SSE value gives the sum of squared
errors of the corresponding regression.

n
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significant serial correlation. The validity of the asymptotic restriction
B, + B =1 s tested, and the restriction is found to be well consistent with the
experimental data. In no case can the hypothesis of 8, + 8, =1 be rejected at
the usual significance levels. In contrast, the hypothesis of 8,=0 and 8, =1,
as implied by the Reinsel-Ahn method, is strongly rejected in all the four
regressions. The rejection of the hypothesis of 8, =0 and 8, = 1 suggests that
the Reinsel-Ahn method does not yield unbiased estimates of the finite-
sample critical values for Johansen’s tests, and that more accurate estimates
of the finite-sample critical values can be provided by the response surface.

The foregoing results support that the finite-sample bias of Johansen’s
tests is a positive function of T/(T— nk). Since both n and k are of positive
values, T/(T— nk) is always greater than one for any finite T value, indicating
that the tests are biased toward finding cointegration too often when
asymptotic critical values are used. Furthermore, the finite-sample bias
toward over-rejection of the no cointegration hypothesis magnifies with
increasing values of nand k.

In addition to equation (11), a number of different specifications of the
response surface were explored. For example, replacing T—nk in SF by
T—nk—1 was found to reduce the fit of the response surface in all four
regressions. Models of general power-series expansions in 7, n, and k yielded
much worse fits. Moreover, the fit of the response surface deteriorated when
SF was replaced by 1/SF. Estimation of a log-linear model of the response
surface also failed to improve the data fit upon the linear model. On the other
hand, including higher order terms in SF in equation (11) could marginally
improve the fit of the response surface:

CR1/CR. =B+ B, SE+B,SF + ... + B,SF ! +errors. (12)

However, for such specification, the implied asymptotic restriction was found
to be not consistent with the experimental data. Hence, the results are not

reported.

IV. ROBUSTNESS OF THE LIKELIHOOD RATIO TESTS
Lag Specifications

The Johansen analysis assumes that the underlying DGP has a finite order
autoregressive representation with some known lag structure. In empirical
applications, perfect information about the lag length is generally not
available, and data series can exhibit moving-average dependence. Several
questions of interest are: How does the presence of autoregressive or moving-
average dependence affect the sizes of Johansen’s cointegration tests? What
is the sensitivity of the tests to under- and over-parametrization? Are
standard model selection procedures such as those based on the Akaike
information criterion (AIC) and the Schwarz information criterion (SIC)
useful for choosing the optimal lag length for Johansen’s tests? How do these
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lag selection procedures perform in the presence of moving-average
dependence?’

To study the effects of autoregressive dependence on the empirical test
size and the role of lag length selection, Monte Carlo experiments are carried
out using the following DGP:

Xy, =Xy T (X0 —x,20) twy, (13)

X9, = X9, +¢2(x2,—1 _x24—2) +w,,

where w,, and w,, are independent Gaussian zero-mean white noise
processes. The parameters ¢, and ¢, are arbitrarily set equal to 0.2 and 0.7,
respectively. Johansen’s tests with different lags, namely k=1, 2, 3, and 4, are
applied to the simulated data series with 7= 200. Sample sizes of 7= 50 and
100 were also considered, and they yielded qualitatively similar results. For
each lag length, 20,000 replications are simulated. Since the lag length can
affect the empirical test size, appropriate critical values corresponding to the
individual lags are employed. In additional experiments, the lag length is not
preset but estimated by the AIC and the SIC in each replication. Note that
since the model in (13) implies k=2, Johansen’s tests with k=1 will suffer
under-parametrization, but those with k=3 and 4 will suffer over-parametri-
zation.

When compared with an autoregressive model, a moving-average error
model analytically implies an infinite order autoregressive structure. An
important question is whether a finite order autoregressive model can
provide an adequate approximation for a moving average process. To
examine how the approximation error can affect Johansen’s cointegration
tests, Monte Carlo experiments based on the following DGP are conducted:

X, =x;,-;te—03e._, (14)
Xy =Xy tw,—05w, _,

where e, and w, are independent Gaussian zero-mean white noise innova-
tions. Johansen’s tests with lags equal to 1 to 8§ are performed on the
simulated data series with 7= 200. As in the experiments with autoregressive
dependence, 20,000 replications are simulated and lag-adjusted critical
values are employed. In separate experiments, the AIC and the SIC are
applied to determine automatically the lag length used in each replication,
without presetting the lag length.

Table 2A contains the Monte Carlo results concerning the effects of auto-
regressive dependence. In general, there is little difference in behaviour
between the trace test and the maximal eigenvalue test. Both cointegration

3Reimers (1991) has examined the usefulness of standard lag selection criteria in estimating
the lag order for Johansen’s trace test in simulation experiments. Unlike the present study,
Reimers does not consider data processes with moving-average innovations.

1,1
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TABLE 2
Effects of Lag Specification

321

The trace test

The maximal eigenvalue test

Fitted
k $Z10

SZ05

$Z10

S5Z05

(A) The true DGP is given by model (13) with autoregressive dependence (k= 2):

1 0.280
2 0.105
3 0.108
4 0.111
AIC 0.107
SIC 0.107

Lag selected using the AIC and SIC (% of the time in 20,000 replications):

0.228
0.053
0.057
0.057
0.055
0.055

0.304
0.107
0.108
0.111
0.107
0.107

For k=1, 0.000% using the AIC and 0.000% using the SIC.
For k=2, 99.86% using the AIC and 99.96% using the SIC.
For k=3, 0.125% using the AIC and 0.035% using the SIC.
For k=4, 0.015% using the AIC and 0.005% using the SIC.

(B) The true DGP is given by model (14) with moving-average dependence:

0.711
0.264
0.147
0.118
0.107
0.102
0.097
0.098
AIC 0.271
SIC 0.288

00NN S WK -

Lag selected using the AIC and SIC (% of the time in 20,000 replications):

0.617
0.170
0.081
0.060
0.055
0.051
0.049
0.050
0.183
0.203

0.690
0.270
0.150
0.120
0.108
0.102
0.095
0.099
0.276
0.293

For k=1, 5.235% using the AIC and 9.500% using the SIC.
For k=2, 86.72% using the AIC and 86.37% using the SIC.
For k=3, 7.905% using the AIC and 4.095% using the SIC.
For k=4, 0.140% using the AIC and 0.040% using the SIC.
For k=15, 0.000% using the AIC and 0.000% using the SIC.
For k=6, 0.000% using the AIC and 0.000% using the SIC.
For k=17, 0.000% using the AIC and 0.000% using the SIC.
For k=8, 0.000% using the AIC and 0.000% using the SIC.

0.237
0.050
0.052
0.055
0.054
0.054

0.564
0.159
0.073
0.057
0.052
0.053
0.047
0.050
0.189
0.207

All the simulation results are based on 20,000 replications. The columns beneath SZI0 and
SZ05 give estimates of the empirical sizes of the 10% and 5% tests, respectively. In experiment
(A), the maximum lag allowed in lag selection using the AIC and SIC is 4. In experiment (B), the
maximum lag allowed in lag selection using the AIC and SIC is 8.
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tests appear robust to over-parametrization, given that the biases in test sizes
are reasonably small. In the case of under-parametrization (k= 1), however,
the cointegration tests are severely distorted with the empirical test sizes
being far above their nominal levels.* With a 5 percent test, for example, the
upward bias in the test size is given by +0.178 for the trace test and by
+0.187 for the maximal eigenvalue test. Interestingly, the Monte Carlo
results also show that the lag selection criteria are useful for choosing the
right lag length. The SIC seems to perform slightly better than the AIC. Still
the AIC can pick the correct lag in more than 99.8 percent of all replications
in our case.

Table 2B contains the Monte Carlo results for the effects of moving-
average dependence. When a relatively low order autoregressive model is
used, both the trace tests and the maximal eigenvalues test are seriously
biased toward spuriously finding cointegration. The results underscore the
fact that the low order autoregressive model provides a poor approximation
for the moving-average process. This misspecification problem can be
mitigated by estimating a high order autoregressive model. When the number
of lags is adequately specified, the results appear encouraging. The bias of
either test becomes very small. In general, we expect that the number of lags
required to provide an adequate approximation should increase with the
strength of the moving-average dependence. Unfortunately, the lag selection
criteria cannot help find the proper approximating model in this situation. As
shown in Table 2B, both the AIC and the SIC perform very poorly in the
presence of moving-average dependence. The disappointing performance
suggests that we should not rely solely on the lag selection criteria in choosing
the estimated model for Johansen’s tests.

Non-Normal Innovations

The critical values in the response surface analysis are obtained under the
assumption of normal innovations, as in the formal derivation of Johansen’s
tests. This assumption may not be an appropriate characterization of the data
series empirically. In the analysis below, we examine the potential bias in the
test size due to non-normal innovations, inciuding non-symmetric and
leptokurtic ones. A commonly known source of leptokurtic innovations is
conditional heteroskedasticity, which leads to heavy-tailed distributions.

A simple Monte Carlo experiment is designed to illustrate the potential
effects of non-normal innovations on Johansen’s cointegration tests.
Fleishman’s (1978) power transformation method, outlined in the Appendix,
is employed to generate non-normal variates with specified first four
moments: mean, variance, skewness, and kurtosis. This method imposes little

*The results here are comparable to those in Gonzalo (1990), which suggest that the ML
estimator of cointegrating vectors are much more sensitive to under-parameterization than to
over-parameterization.
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structure on simulated innovation processes and reduces dependence of the
analysis on a particular specification of the processes. In the Monte Carlo
experiment the DGP is considered as follows:

X, =X, TV
1r 1e—1 t (15)
Xo =Xg T2,

where v, and z, are non-normal random variables generated using the
Fleishman method. The mean of either variable is set equal to zero, and its
variance is specified as unity. For simplicity, v, and z, are considered to have
the same degree of skewness (SK) and excess kurtosis (KU) in the simulation
experiment.’ The experiment adopts a factorial design covering all combina-
tions of KU={0.00, 0.75, 1.50, 2.25, 3.00, 3.75} and SK={-1.00, —0.75,
-0.5,0.0,0.5,0.75, 1.0}.5 In the case of KU=SK =0, v, and z, are normally
distributed innovations. The experimental results are based on 20,000 repli-
cations. To control for the effects of the sample size and the lag length on
Johansen’s tests, we set 7=200 and k=2 in each replication. Hence,
distortions in the test size detected in the experiment will arise from non-
normality only.

If deviations from normality can affect Johansen’s tests, the bias in the test
size will be a function of SK and KU. Without any knowledge about the exact
functional relationship, we follow the usual response surface analysis and
consider a power-series approximating function:

BIAS=a,+a,SK+a,KU+a;5K?+a,KU?+a;SK*KU (16)

+asSK*+a,KU?+agSK*KU +aySK*KU? + ... + error

where BIAS = the bias in the test size measured by the change in the empirical
test size relative to that in the benchmark case where SK = KU =0; BIAS>0
indicates an upward bias and BIAS <0 indicates a downward bias in the
empirical test size. A testable restriction is that the constant term a, equals
zero since, by construction, BIAS =0 when SK =KU=0.

The estimation results concerning the effects of non-normality on
Johansen’s tests are reported in Table 3. After experimenting with different
orders of power-series expansions, a second order power-series function was
found to fit the data best for the trace test, whereas a third order one was
found to fit the data best for the maximal eigenvalue test. The empirical
results confirm that in no case can the hypothesis of a zero constant term be
rejected at the usual significance levels. The results further show that

5The skewness is computed as the third sample moment standardized by the cube of the
standard deviation. The excess kurtosis is the fourth sample moment divided by the square of
the variance minus three. For a normal distribution both coefficients should be equal to zero.

*To provide some idea about the degree of skewness, we note that for a sample statistic of
|SK |2 0.5, the hypothesis of a symmetric distribution can be rejected at the 5 percent signifi-
cance level, even in samples of size 50.
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skewness in innovations has a statistically significant effect on the test sizes of
both the trace and the maximal eigenvalue test. On the other hand, the trace
test seems to be more robust to excess kurtosis in innovations than the
maximal eigenvalue test. For the trace test, all the coefficients on KU and its
related terms are not statistically significant, except for a cross-product term
SK*KU in the case of a 5 percent trace test. For the maximal eigenvalue test,
in contrast, most of the coefficients on KU and its related terms are statisti-
cally significant.

Given the possible effects of non-normality, the question next is whether
the resulted bias in the test size is substantial in magnitude. The coefficient
estimates reported in Table 3 all appear rather small and are of a magnitude
of order 103 or smaller. To evaluate quantitatively how sensitive Johansen’s
tests are to deviations from normality, the estimated equations in Table 3 are
used to compute the bias in the test size with a range of values of skewness
and excess kurtosis. With KU=3, 5, and 7 (but no skewness), for example,
the estimated biases in the test size are given respectively by +0.0018,
+0.0028, and +0.0124 for the 10 percent maximal eigenvalue test and by
-0.0002, +0.0001, and +0.0004 for the 10 percent trace test. With
SK=1, 2, and 3 (but no excess kurtosis), the estimated biases in the test size
are given respectively by —0.0057, —0.0314, and —0.0894 for the 10
percent maximal eigenvalue test and by —0.0015, —0.0038, and —0.0074
for the 10 percent trace test. These estimates indicate that while the maximal
eigenvalue test is reasonably robust to excess kurtosis, it shows substantial
bias in the presence of large skewness. The trace test, in contrast, shows little
bias in the presence of either skewness or excess kurtosis. In general, the trace
test is found to be more robust to both skewness and excess kurtosis than the
maximal eigenvalue test. This finding may possibly reflect the difference in
the way the test statistics of the two tests are constructed.

V. CONCLUSIONS

In this study the finite-sample bias of Johansen’s (1991) LR test for cointegra-
tion has been examined using the Monte Carlo method. Response surface
analysis is employed to obtain approximations to the finite-sample critical
values and show the individual roles of the sample size, the dimension of the
variable system, and the lag order in determining the finite-sample bias of
Johansen’s tests. It is found that Johansen’s tests are biased toward finding
cointegration more often than what asymptotic theory suggests. Moreover,
the finite-sample bias magnifies as the dimension of the estimated system or
the lag length increases. Proper corrections of the critical values in finite
samples are therefore particularly essential when the estimated system
contains many variables and/or long lags. Other results obtained are summar-
ized as follows:
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The trace test The maximal eigenvalue test
Regressors
and statistics 10% 5% 10% 5%
Constant -0.00051 -0.00019 0.00041 0.00004
{0.00031) {0.00023) (0.00032) (0.00023)
SK —0.00032 -0.00160 —0.00056 —0.00293
(0.00037) (0.00023)** (0.00047) (0.00038)**
KU 0.00007 0.00034 0.00276 -0.00106
(0.00033) (0.00021) {0.00061)** (0.00049)**
SK? —0.00066 —0.00045 —0.00346 -0.00146
(0.00031)** (0.00022)* (0.00078)** (0.00050)**
KU? 0.00001 —0.00004 —-0.00122 0.00076
(0.00008) {—0.00005) (0.00036)** (0.00031)**
SK*KU 0.00004 0.00025 0.00097 0.00187
(0.00013) {0.00009)** {0.00048)* (0.00036)**
SK?3 -0.00211 —0.00022
(0.00052)** (0.00038)
KU? 0.00015 -0.00013
(0.00006)** (0.00005)**
SK*KU —0.00011 -0.00029
(0.00010) (0.00009)**
SK*KU? 0.00096 0.00052
(0.00028)** (0.00021)**
R? 0.1756 0.7727 0.8181 0.8259
DW 2.1645 2.1860 1.6229 23710
Ljung-Box (12) 47610 11.3038 15.4581 17.3187
[p-value] [0.9066] [0.5031] [0.2173] [0.1380]
White’s test 21.7417 20.8334 31.0256 24.8095
[p-value] {0.1148] [0.1422] [0.2701] {0.5821]

The dependent variable is the bias in the empirical test size (see equation (16)). The
Ljung-Box(r) test statistic has asymptotically a chi-square distribution with r degrees of
freedom under the null hypothesis of no serial correlation in the residual. The numbers in
parentheses are heteroskedasticity-consistent standard errors (White (1980)). Statistical signifi-
cande is indicated by * at the 10% level and ** at the 5% level.
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(1) Response surface analysis can provide better approximations for the
finite-sample critical values of Johansen’s tests than the Reinsel~Ahn (1988)
method.

(2) Johansen’s cointegration tests are rather sensitive to under-parametri-
zation in the lag length, though not so to over-parametrization. The result
points to the importance of proper lag specifications in estimating co-
integrated systems.

(3) For autoregressive processes, standard lag selection criteria such as the
AIC and the SIC can be useful for choosing the right lag order for Johansen’s
tests.

(4) The presence of moving-average dependence can seriously bias
Johansen’s tests toward finding spurious cointegration unless the number of
lags is sufficiently specified to provide a good finite order approximation for
the moving-average component. In this case, both the AIC and the SIC
perform poorly in selecting the proper lag length for Johansen’s tests.

(5) Between Johansen’s two LR tests for cointegration, the trace test
shows more robustness to both skewness and excess kurtosis in innovations
than the maximal eigenvalue test.

University of California, Santa Cruz,
California State University, Los Angeles
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APPENDIX
Simulating Non-normal Innovations

A procedure to generate non-normal errors is devised by Fleishman (1978).
The Fleishman method involves constructing a random variate, z,, as a linear
combination of a standard normal variate, y,, and its square and cube:

z,=a+by, +cy; +dy,. (A1)

The constants a, b, ¢, and d are chosen to provide z, with the specified
distribution properties. By evaluating the first four moments of z,, a system of
four equations with four unknowns can be used to determine g, b, ¢, and d.
Fleishman (1978) shows that for a distribution with mean zero and unit
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variance, the corresponding constants can be obtained as the solution to the
following equations:

b2 +6bd+2c2+15d*-1=0
2¢c(b? +24bd +105d* +2) - SK =0
24[bd + c*(1 + b? +28bd) + d*(12 +48bd + 1412 +2254%)| - KU=0
a=—c¢

where SK is the desired skewness and KU is the desired kurtosis. Since the
system of equations are non-linear, it is solved using optimization methods.
Using the solution values for a, b, ¢, and d, non-normal variates with different
degrees of skewness and excess kurtosis can be generated by equation (A1).



